Modelo atómico de bohr

Introducción

Bohr se basó en el átomo de hidrógeno para hacer el modelo que lleva su nombre. Bohr intentaba realizar un modelo atómico capaz de explicar la estabilidad de la materia y los espectros de emisión y absorción discretos que se observan en los gases. Describió el átomo de hidrógeno con un protón en el núcleo, y girando a su alrededor un electrón.

El modelo atómico de Bohr partía conceptualmente del modelo atómico de Rutherford y de las incipientes ideas sobre cuantización que habían surgido unos años antes con las investigaciones de Max Planck y Albert Einstein. Debido a su simplicidad el modelo de Bohr es todavía utilizado frecuentemente como una simplificación de la estructura de la materia.

En este modelo los electrones giran en órbitas circulares alrededor del núcleo, ocupando la órbita de menor energía posible, o la órbita más cercana posible al núcleo. El electromagnetismo clásico predecía que una partícula cargada moviéndose de forma circular emitiría energía por lo que los electrones deberían colapsar sobre el núcleo en breves instantes de tiempo.

Para superar este problema Bohr supuso que los electrones solamente se podían mover en órbitas específicas, cada una de las cuales caracterizada por su nivel energético. Cada órbita puede entonces identificarse mediante un número entero n que toma valores desde 1 en adelante. Este número “n” recibe el nombre de Número Cuántico Principal.

Bohr supuso además que el momento angular de cada electrón estaba cuantizado y sólo podía variar en fracciones enteras de la constante de Planck. De acuerdo al número cuántico principal calculó las distancias a las cuales se hallaba del núcleo cada una de las órbitas permitidas en el átomo de hidrógeno.

Estos niveles en un principio estaban clasificados por letras que empezaban en la “K” y terminaban en la “Q”. Posteriormente los niveles electrónicos se ordenaron por números.

Cada órbita tiene electrones con distintos niveles de energía obtenida que después se tiene que liberar y por esa razón el electrón va saltando de una órbita a otra hasta llegar a una que tenga el espacio y nivel adecuado, dependiendo de la energía que posea, para liberarse sin problema y de nuevo volver a su órbita de origen.

Modelo atómico de bohr

Bohr desarrolló su modelo con mucha mayor profundidad. Explicó el mecanismo por el que los átomos emiten luz y otras ondas electromagnéticas y propuso la hipótesis de que un electrón “elevado” por una perturbación suficiente desde la órbita de menor radio y menor energía (el estado fundamental) hasta otra órbita vuelve a “caer” al estado fundamental al poco tiempo.

Esta caída está acompañada de la emisión de un único fotón con energía E = hu, que corresponde a la diferencia de energía entre las órbitas superior e inferior.

Cada transición entre órbitas emite un fotón característico cuya longitud de onda y frecuencia están exactamente definidas; por ejemplo, en una transición directa desde la órbita de n = 3 hasta la de n = 1 se emite un solo fotón, muy distinto de los dos fotones emitidos en una transición secuencial desde la órbita de n = 3 hasta la de n = 2 y a continuación desde ésta hasta la de n = 1.

Este modelo permitió a Bohr explicar con gran precisión el espectro atómico más sencillo, el del hidrógeno, que había desafiado a la física clásica. Aunque el modelo de Bohr se amplió y perfeccionó, no podía explicar los fenómenos observados en átomos con más de un electrón. Ni siquiera podía explicar la intensidad de las rayas espectrales del sencillo átomo de hidrógeno.

Como su capacidad de predicción de resultados experimentales era limitada, no resultaba plenamente satisfactorio para los físicos teóricos.

El átomo de hidrógeno

El Átomo de Hidrógeno contiene un electrón y un núcleo que consiste de un sólo protón. El electrón del átomo de Hidrógeno puede existir solamente en ciertas órbitas esféricas las cuales se llaman niveles o capas de energía.

Estos niveles de energía se hallan dispuestos concentricamente alrededor del núcleo. Cada nivel se designa con una letra (K, L, M, N,…) o un valor de n (1, 2, 3, 4,…).

El electrón posee una energía definida y característica de la órbita en la cual se mueve. Un electrón de la capa K (más cercana al núcleo) posee la energía más baja posible.

Con el aumento de la distancia del núcleo, el radio del nivel y la energía del electrón en el nivel aumentan. El electrón no puede tener una energía que lo coloque entre los niveles permitidos.

Un electrón en la capa más cercana al núcleo (Capa K) tiene la energía más baja o se encuentra en estado basal. Cuando los átomos se calientan, absorben energía y pasan a niveles exteriores, los cuales son estados energéticos superiores. Se dice entonces que los átomos están excitados.

Cuando un electrón regresa a un Nivel inferior emite una cantidad definida de energía a la forma de un cuanto de luz. El cuanto de luz tiene una longitud de onda y una frecuencia características y produce una línea espectral característica.

La longitud de onda y la frecuencia de un fotón producido por el paso de un electrón de un nivel de energía mayor a uno menor en el átomo de Hidrógeno esta dada por:

Para Bohr el átomo sólo puede existir en un cierto número de estados estacionarios, cada uno con una energía determinada. La energía sólo puede variar por saltos sucesivos, correspondiendo cada salto a una transición de un estado a otro.

Evolución de los modelos físicos del átomo

La evolución de los modelos físicos del átomo se vio impulsada por los datos experimentales. El modelo de Rutherford, en el que los electrones se mueven alrededor de un núcleo positivo muy denso.

Explicaba los resultados de experimentos de dispersión, pero no el motivo de que los átomos sólo emitan luz de determinadas longitudes de onda (emisión discreta).

Bohr partió del modelo de Rutherford pero postuló además que los electrones sólo pueden moverse en determinadas órbitas. Su modelo explicaba ciertas características de la emisión discreta del átomo de hidrógeno, pero fallaba en otros elementos.