Introducción
El Éter en química, más específicamente éter etílico o etoxietano, compuesto líquido incoloro, de fórmula (C2H5)2O, y con un punto de ebullición de 34,6 °C. Es extremamente volátil e inflamable, tiene un olor fuerte y característico, y un sabor dulce y a quemado. El éter es casi insoluble en agua, pero se disuelve en todas las proporciones en la mayoría de los disolventes líquidos orgánicos, como el alcohol y el disulfuro de carbono.
El éter es uno de los disolventes orgánicos más importantes y se usa con frecuencia en el laboratorio como disolvente de grasas, aceites, resinas y alcaloides, entre otros compuestos. La mezcla de vapor de éter y aire es muy explosiva; además, con el tiempo el éter puede oxidarse parcialmente formando un peróxido explosivo. Por lo tanto, el éter debe almacenarse y manejarse con mucho cuidado. Se usa principalmente como disolvente, como materia prima para fabricar productos químicos y como anestésico.
Descubierto probablemente en el siglo XIII, el éter sigue preparándose mediante una de las reacciones orgánicas más antiguas calentando etanol con ácido sulfúrico concentrado. Hay que controlar cuidadosamente la temperatura para que oscile entre 130 y 150 °C, porque a temperaturas mayores el éter reacciona produciendo gas eteno. El éter en bruto se purifica agitándolo con agua de cal (para eliminar los contaminantes ácidos), después con cloruro de calcio anhidro (para extraer el alcohol sin reaccionar y la mayoría del agua) y volviendo a destilar. Aunque contiene pequeñas cantidades de agua, este éter es útil para la mayoría de las aplicaciones, incluso para el uso quirúrgico. Si se vuelve a destilar en presencia de pentóxido de fósforo o sodio metálico, el producto final, éter absoluto, no contiene ni agua ni alcohol.
Nomenclatura
La nomenclatura de los éteres según las recomendaciones de 1993 de la IUPAC (actualmente en vigencia) especifican que estos compuestos pertenecientes al grupo funcional oxigenado deben nombrarse como alcoxialcanos, es decir, como si fueran sustituyentes.
Se debe especificar al grupo funcional éter como de menor prioridad frente a la mayoría de cadenas orgánicas. Cada radical éter será acompañado por el sufijo oxi.
Un compuesto sencillo, como por ejemplo CH3-O-C6H5 según las normas de la IUPAC se llamaría: metoxibenceno
La nomenclatura tradicional o clásica (también aceptada por la IUPAC y válida para éteres simples) especifica que se debe nombrar por orden alfabético los sustituyentes o restos alquílicos de la cadena orgánica al lado izquierdo de la palabra éter. El compuesto anterior se llamaría según las normas antiguas (ya en desuso) de esta manera: fenil metil éter.
Síntesis de éteres
La síntesis de éteres de Williamson es la síntesis de éteres más fiable y versátil. Este método implica un ataque SN2 de un ion alcóxido a un haluro de alquilo primario no impedido o tosialato. Los haluros de alquilo secundarios y los tosialatos se utilizan ocasionalmente en la síntesis de Williamson, pero hay competencia en las reacciones de eliminación, por lo que los rendimientos con frecuencia son bajos.
El alcóxido generalmente se obtiene añadiendo Na, K o NaOH al alcohol.
Síntesis de éteres mediante aloximercuriación-desmercuriación. En el proceso de aloximercuriación-desmercuriación se añade una molécula de un alcohol a un doble enlace de un alqueno.
Síntesis industrial: deshidratación bimolecular de alcoholes.
Usos de los éteres
Medio para extractar para concentrar ácido acético y otros ácidos.
Medio de arrastre para la deshidratación de alcoholes etílicos e isopropílicos.
Disolvente de sustancias orgánicas (aceites, grasas, resinas, nitrocelulosa, perfumes y alcaloides).
Combustible inicial de motores Diésel.
Fuertes pegamentos
Antinflamatorio abdominal para después del parto, exclusivamente uso externo.