Introducción
Mecánica, rama de la física que se ocupa del movimiento de los objetos y de su respuesta a las fuerzas. Las descripciones modernas del movimiento comienzan con una definición cuidadosa de magnitudes como el desplazamiento, el tiempo, la velocidad, la aceleración, la masa y la fuerza. Sin embargo, hasta hace unos 400 años el movimiento se explicaba desde un punto de vista muy distinto.
Por ejemplo, los científicos razonaban siguiendo las ideas del filósofo y científico griego Aristóteles que una bala de cañón cae porque su posición natural está en el suelo; el Sol, la Luna y las estrellas describen círculos alrededor de la Tierra porque los cuerpos celestes se mueven por naturaleza en círculos perfectos.
El físico y astrónomo italiano Galileo reunió las ideas de otros grandes pensadores de su tiempo y empezó a analizar el movimiento a partir de la distancia recorrida desde un punto de partida y del tiempo transcurrido. Demostró que la velocidad de los objetos que caen aumenta continuamente durante su caída. Esta aceleración es la misma para objetos pesados o ligeros, siempre que no se tenga en cuenta la resistencia del aire (rozamiento).
El matemático y físico británico Isaac Newton mejoró este análisis al definir la fuerza y la masa, y relacionarlas con la aceleración. Para los objetos que se desplazan a velocidades próximas a la velocidad de la luz, las leyes de Newton han sido sustituidas por la teoría de la relatividad de Albert Einstein. Para las partículas atómicas y subatómicas, las leyes de Newton han sido sustituidas por la teoría cuántica. Pero para los fenómenos de la vida diaria, las tres leyes del movimiento de Newton siguen siendo la piedra angular de la dinámica (el estudio de las causas del cambio en el movimiento).
Mecánica clásica
La mecánica clásica está formada por áreas de estudio que van desde la mecánica del sólido rígido y otros sistemas mecánicos con un número finito de grados de libertad, como la mecánica de medios continuos (sistemas con inifinitos grados de libertad). Existen dos formulaciones diferentes, que difieren en el grado de formalización para los sistemas con un número finito de grados de libertad:
Mecánica newtoniana: Dio origen a las demás disciplinas y se divide en varias de ellas: la cinemática, estudio del movimiento en sí, sin atender a las causas que lo originan; la estática, que estudia el equilibrio entre fuerzas y la dinámica que es el estudio del movimiento atendiendo a sus orígenes, las fuerzas.
Mecánica analítica: una formulación matemática muy potente de la mecánica newtoniana basada en el principio de Hamilton, que emplea el formalismo de variedades diferenciables, en concreto el espacio de configuración y el espacio fásico.
Medios continuos
La mecánica de medios continuos trata de cuerpos materiales extensos deformables y que no pueden ser tratados como sistemas con un número finito de grados de libertad. Esta parte de la mecánica trata a su vez de:
La mecánica de sólidos deformables, que considera los fenómenos de la elasticidad, la plasticidad, la viscoelasticidad, etc.
La mecánica de fluidos, que comprende un conjunto de teorías parciales como la hidráulica, la hidrostática o fluidoestática y la hidrodinámica) o fluidodinámica. Dentro del estudio de los flujos se distingue entre flujo compresible y flujo incompresible. Si se atiende a los fluidos de acuerdo a su ecuación constitutiva, se tienen fluidos perfectos, fluidos newtonianos y fluidos no-newtonianos.
La acústica, la mecánica ondulatoria clásica.
Mecánica estadística
La mecánica estadística trata de sistemas con muchas partículas y que por tanto tienen un número elevado de grados de libertad, al punto que no resulta posible escribir todas las ecuaciones de movimiento involucradas y, en su defecto, trata de resolver aspectos parciales del sistema por métodos estadísticos que dan información útil del comportamiento global del sistema sin especificar qué sucede con cada partícula del sistema.
Los resultados obtenidos coinciden con los resultados de la termodinámica. Usa tanto formulaciones de la mecánica hamiltoniana como formulaciones de la teoría de probabilidad. Existen estudios de mecánica estadística basados tanto en la mecánica clásica como en la mecánica cuántica.
Mecánica cuántica
La mecánica cuántica trata con sistemas mecánicos de pequeña escala o con energía muy pequeñas (y ocasionalmente sistemas macroscópicos que exhiben cuantización de alguna magnitud física). En esos casos los supuestos de la mecánica clásica no son adecuados. En particular el principio de determinación por el cual la evolución de un sistema es determinista, ya que las ecuaciones para la función de onda de la mecánica cuántica no permiten predecir el estado del sistema después de una medida concreta, asunto conocido como problema de la medida.
En mecánica cuántica el enfoque probabilístico, lleva por ejemplo en el enfoque más común renunciar al concepto de trayectoria de una partícula. Peor aún el concepto la interpretación de Copenhague renuncia por completo a la idea de que las partículas ocupen un lugar concreto y determinado en el espacio-tiempo.
La estructura interna de algunos sistemas físicos de interés como los átomos o las moléculas sólo pueden ser explicados mediante un tratamiento cuántico, ya que la mecánica clásica hace predicciones sobre dichos sistemas que contradicen la evidencia física.
En ese sentido la mecánica cuántica se considera una teoría más exacta o más fundamental que la mecánica clásica que actualmente sólo se considera una simplificación conveniente de la mecánica cuántica para cuerpos macroscópicos.
También existe una mecánica estadística cuántica que incorpora restricciones cuánticas en el tratamiento de los agregados de partículas.
Mecánica cuántica relativista
La mecánica cuántica relativista trata de aunar mecánica relativista y mecánica cuántica, aunque el desarrollo de esta teoría lleva a la conclusión de que en un sistema cuántico relativista el número de partículas no se conserva y de hecho no puede hablarse de una mecánica de partículas, sino simplemente de una teoría cuántica de campos.
Esta teoría logra aunar principios cuánticos y teoría de la relatividad especial (aunque no logra incorporar los principios de la relatividad general). Dentro de esta teoría, no se consideran ya estados de las partículas sino del espacio-tiempo. De hecho cada uno de los estados cuánticos posibles de el espacio tiempo viene caracterizado por el número de partículas de cada tipo representadas por campos cuánticos y las propiedades de dichos campos.
Es decir, un universo donde existan Ni partículas del tipo i en los estados cuánticos E1, …, ENi representa un estado cuántico diferente de otro estado en el que observamos en mismo universo con un número diferente de partículas. Pero ambos, “estados” o aspectos del universo son dos de los posibles estados cuánticos físicamente realizables del espacio-tiempo. De hecho la noción de partícula cuántica es abandonada en la teoría cuántica de campos, y esta noción se substituye por la de campo cuántico.
Un campo cuántico es una aplicación que asigna a una función suave sobre una región del espacio-tiempo un operador autoadjunto. La función suave representa la región donde se mide el campo, y los valores propios del operador número asociado al campo el número de partículas observables a la hora de realizar una medida de dicho campo.
Estudios interdisciplinarios relacionados con la mecánica
La Ingeniería electromecánica, que aplica conceptos de las ciencias del Electromagnetismo, la Electrónica, la Eléctrica y la Mecánica.
La Biomecánica, que aplica conceptos mecánicos dentro de la biología y la medicina.
La econofísica, que aplica técnica de la mecánica estadística a la economía.
La Economía ecológica, que critica la aplicación de la mecánica clásica a la economía convencional.