Aldehídos y cetonas

Aldehídos

La mayoría de los aldehídos son solubles en agua y presentan puntos de ebullición elevados. El grupo carbonilo les proporciona una gran reactividad desde el punto de vista químico; dan ácidos carboxílicos con mucha facilidad. Los aldehídos se obtienen a partir de los alcoholes primarios, controlando el proceso para evitar que el aldehído pase a ácido.

Los Aldehídos son compuestos orgánicos que contienen el grupo carbonilo (CO) y que responden a la fórmula general

 

 

donde R es un átomo de hidrógeno (es el caso del metanal) o un radical hidrocarbonado alifático o aromático.

Estos compuestos están presentes en muchas frutas, siendo responsables de su olor y sabor característicos, y tienen mucha importancia en la fabricación de plásticos, tintes, aditivos y otros compuestos químicos. Los dos primeros de la serie son el metanal y el etanal.

Para nombrar los aldehidos, la “o” final del nombre del alcano respectivo se sustituye por el sufijo “al”. Para los miembros inferiores de la familia predomina el empleo de los nombres comunes como por ejemplo, Metanal o formaldehido, HCHO; etanal o acetaldehido, CH3 – CHO; propanal o propionaldehido, CH3 – CH2 – CHO; butanal o butiraldehido, CH3 – CH2 – CH2 – CHO; ventanal o valeraldehido, CH3 – CH2 – CH2 – CH2 – CHO y benzaldehido, C6H5 – CHO

Cetonas

Cetona, cada uno de los compuestos orgánicos que contienen el grupo carbonilo (CO) y que responden a la fórmula general R—CO—R?, en la que R y R? representan radicales orgánicos.

 

 

Al grupo carbonilo se debe la disolución de las cetonas en agua. Son compuestos relativamente reactivos, y por eso resultan muy útiles para sintetizar otros compuestos; también son productos intermedios importantes en el metabolismo de las células. Se obtienen a partir de los alcoholes secundarios.

La cetona más simple, la propanona o acetona, CH3COCH3, es un producto del metabolismo de las grasas, pero en condiciones normales se oxida rápidamente a agua y dióxido de carbono. Sin embargo, en la diabetes mellitus la propanona se acumula en el cuerpo y puede ser detectada en la orina. Otras cetonas son el alcanfor, muchos de los esteroides, y algunas fragancias y azúcares.

Para nombrar las cetonas, la “o” final del nombre del alcano respectivo se sustituye por el sufijo “ona”. La acetona es la misma la propanona o dimetilcetona, CH3 – CO – CH3; y la butanona es denominada también metiletilcetona, CH3 – CO – CH2 – CH3. La 2-pentanona, CH3 – CO – CH2 – CH2 – CH3 y la 3-pentanona, CH3 – CH2 – CO – CH2 – CH3 son isómeros de posición. La metilfenilcetona o acetofenona y la difenilcetona o benzofenona son cetonas aromáticas porque alguno de los radicales hidrocarbonados enlazados al grupo carbonilo son grupos arilos.

Propiedades físicas de aldehídos y cetonas

Salvo el formaldehído que es un gas, casi todos los aldehídos son líquidos. Los miembros inferiores son de olor agradable, muchos otros se emplean en la fabricación de perfumes y sabores artificiales. El formaldehído y el acetaldehído son infinitamente solubles en agua, los homólogos superiores no son hidrosolubles. Los aldehídos son menos densos que el agua e incoloros. Las cetonas tienen propiedades casi idénticas a los aldehídos y se diferencian de estos por su suave olor.

Propiedades físicas de aldehídos y cetonas

Las reacciones químicas de los aldehídos y cetonas son función del grupo carbonilo. Por su mayor electronegatividad, el oxígeno atrae el par electrónico mas hacia él alejándolo del carbono. En consecuencia, la distribución electrónica del enlace no resulta simétrica; el oxígeno es ligeramente negativo y el carbono ligeramente positivo.

Adición de alcohol a aldehídos y cetonas

La adición de un mol de un alcohol a un aldehido o cetona produce un hemiacetal o hemicetal, respectivamente. Estos son productos inestables. Sin embargo, las estructuras cíclicas de los monosacáridos se configuran mediante un enlace hemiacetálico o hemicetálico interno entre el grupo aldehido y un grupo hidroxilo de la molécula. El hemiacetal formado entre acetaldehído y alcohol etílico y el hemicetal que resulta entre acetona y alcohol etílico tienen las siguientes fórmulas

 

 

 

Oxidación de aldehídos y cetonas

Los aldehídos oxidan fácilmente y se convierten en el ácido carboxílico respectivo, en contraste con las cetonas que son difíciles de oxidar, en presencia de los agentes oxidantes habituales de gran poder como el permanganato de potasio, dicromato de potasio y otros.

La reacción global de oxidación de un aldehído es la siguiente:

 

 

Al añadirle la mezcla oxidante a una cetona se comprueba que no hay oxidación por no cambiar el color. Esta propiedad permite diferenciar un aldehído de una cetona, mediante la utilización de oxidantes relativamente débiles, como soluciones alcalinas de compuestos cúpricos o argentosos que reciben el nombre de reactivos de Fehling, Benedict y Tollens.

Reactivo de Fehling

El reactivo de Fehling permite determinar la presencia de aldehídos en una muestra desconocida. Se prepara de tal manera que es una mezcla de color azul que al añadirla a una muestra desconocida oxida a los grupos aldehídos y como resultado positivo de la prueba se observa un precipitado de color rojo ladrillo de óxido cuproso.

El reactivo de Fehling consta de dos soluciones A y B que se mezclan en partes iguales en el momento de usarse. La solución A es sulfato cúprico pentahidratado, mientras que la solución B es de tartrato sódio potásico e hidróxido de sodio en agua. Cuando se mezclan las dos soluciones, se obtiene un complejo cúprico tartárico en medio alcalino, de color azul, de la siguiente manera:

 

 

 

El color azul de la solución cúprica del Fehling desaparece con la presencia de un precipitado de color rojo ladrillo (el cobre se reduce de +2 a +1) y la oxidación del aldehído al correspondiente ácido carboxílico.

Reactivo de Benedict

La Prueba de Benedict tiene el mismo fundamento de la de Fehling y permite, por lo tanto, la determinación de aldehídos en una muestra desconocida. En este reactivo se emplea el citrato de sodio en reemplazo del tartrato sódico potásico y el complejo que se forma es de citrato sódico cúprico en un medio alcalino. La reacción de oxidación es la siguiente:

 

 

 

Reactivo de Tollens

Este reactivo contiene unión complejo de plata amoniacal, que se reduce a plata metálica en presencia de aldehídos que son fácilmente oxidados. La plata se deposita y se observa como un espejo sobre las paredes del recipiente donde se realice la prueba.

La reacción general es:

 

 

Reactivo de Schiff

El reactivo de Schiff es clorhidrato de p-rosaanilina que se decolora con ácido sulfuroso y reacciona con los aldehídos produciendo una coloración púrpura. Permite diferenciar aldehídos y cetonas.

Aldehídos y Cetonas importantes

El formaldehído es un gas incoloro y de olor extremadamente irritante. Se disuelve en agua en soluciones del 37 al 40 % (Formol). Es germicida, astringente, antiséptico y fungicida.

La conservación de cadáveres con formaldehído depende mas de efecto antimicrobiano que el endurecimiento de los tejidos (se conjuga con las proteínas).

El acetaldehído es un líquido incoloro, extremadamente volátil e importante en síntesis orgánica.

El cloral es el tricloroacetaldehído, aceite inestable y desagradable por lo cual se introdujo en medicina en forma de hidrato de cloral, CCl3 – CH(OH)2. Se utiliza en la síntesis del DDT y es el mas antiguo de los hipnóticos. Es muy irritante a la piel y a la mucosa.

El paraldehido es un compuesto cíclico que se forma por la adición nucleofílica de tres moléculas de acetaldehído. Es un líquido incoloro, de aroma fuerte y sabor urente desagradable. Es un hipnótico de acción rápida. Es eficaz en convulsiones experimentales y se ha empleado en el tratamiento urgente del tétano, eclampsia, epilepsia y envenenamiento por medicamentos convulsionantes.