Estadística descriptiva

Introducción

Una de las ramas de la estadística más accesible a la mayoría de la población es la descriptiva. La estadística descriptiva analiza, estudia y describe a la totalidad de individuos de una población. Su finalidad es obtener información, analizarla, elaborarla y simplificarla lo necesario para que pueda ser interpretada cómoda y rápidamente y, por tanto, pueda utilizarse eficazmente para el fin que se desee.

Proceso de la estadística descriptiva

El proceso que sigue la estadística descriptiva para el estudio de una cierta población consta de los siguientes pasos:

Selección de caracteres dignos de ser estudiados.
Mediante encuesta o medición, obtención del valor de cada individuo en los caracteres seleccionados.
Elaboración de tablas de frecuencias, mediante la adecuada clasificación de los individuos dentro de cada carácter.
Representación gráfica de los resultados (elaboración de gráficas estadísticas).
Obtención de parámetros estadísticos, números que sintetizan los aspectos más relevantes de una distribución estadística.

Población y muestra

Cuando se realiza un estudio de investigación, se pretende generalmente inferir o generalizar resultados de una muestra a una población. Se estudia en particular a un reducido número de individuos a los que tenemos acceso con la idea de poder generalizar los hallazgos a la población de la cual esa muestra procede. Este proceso de inferencia se efectúa por medio de métodos estadísticos basados en la probabilidad.

La población representa el conjunto grande de individuos que deseamos estudiar y generalmente suele ser inaccesible. Es, en definitiva, un colectivo homogéneo que reúne unas características determinadas.

La muestra es el conjunto menor de individuos (subconjunto de la población accesible y limitado sobre el que realizamos las mediciones o el experimento con la idea de obtener conclusiones generalizables a la población ). El individuo es cada uno de los componentes de la población y la muestra. La muestra debe ser representativa de la población y con ello queremos decir que cualquier individuo de la población en estudio debe haber tenido la misma probabilidad de ser elegido.

Parámetros y estadísticos

Existen medidas para realizar descripciones cuantitativas de los conjuntos de datos, o poblaciones, y de sus muestras, diferenciándose entre ellas las que se refieren a las mismas poblaciones y a las muestras.

Para el caso de las poblaciones, las medidas que las descriven se denominan parámetros, y suelen estar representadas con letras griegas (por ejemplo m y s). Por otro lado, para el caso de aquellas medidas que describen a una muestra se les llama estadísticos o estimadores, y son representados por letras de nuestro alfabeto (por ejemplo, x o s).

Medidas de tendencia central

La medida más evidente que podemos calcular para describir un conjunto de observaciones numéricas es su valor medio. La media no es más que la suma de todos los valores de una variable dividida entre el número total de datos de los que se dispone.

Otra medida de tendencia central que se utiliza habitualmente es la mediana. Es la observación equidistante de los extremos.
Si la media y la mediana son iguales, la distribución de la variable es simétrica. La media es muy sensible a la variación de las puntuaciones. Sin embargo, la mediana es menos sensible a dichos cambios.

Por último, otra medida de tendencia central, no tan usual como las anteriores, es la moda, siendo éste el valor de la variable que presenta una mayor frecuencia.

Gráficos estadísticos

En estadística denominamos gráficos a aquellas imágenes que, combinando la utilización de sombreado, colores, puntos, líneas, símbolos, números, texto y un sistema de referencia (coordenadas), permiten presentar información cuantitativa.

La utilidad de los gráficos es doble, ya que pueden servir no sólo como sustituto a las tablas, sino que también constituyen por sí mismos una poderosa herramienta para el análisis de los datos, siendo en ocasiones el medio más efectivo no sólo para describir y resumir la información, sino también para analizarla.

Los gráficos son medios popularizados y a menudo los más convenientes para presentar datos, se emplean para tener una representación visual de la totalidad de la información. Los gráficos estadísticos presentan los datos en forma de dibujo de tal modo que se pueda percibir fácilmente los hechos esenciales y compararlos con otros.

Tipos de gráficos estadísticos

Barras: Representan valores usando trazos verticales, aislados o no unos de otros, según la variable a graficar sea discreta o continua. Pueden usarse para representar una, dos o más series.
Líneas: En este tipo de gráfico se representan los valores de los datos en dos ejes cartesianos ortogonales entre sí. Se pueden usar para representar una, dos o más series.
Circulares: Estos gráficos nos permiten ver la distribución interna de los datos que representan un hecho, en forma de porcentajes sobre un total. Se suele separar el sector correspondiente al mayor o menor valor, según lo que se desee destacar.
Áreas: En estos tipos de gráficos se busca mostrar la tendencia de la información generalmente en un período de tiempo.
Cartogramas: Estos tipos de gráficos se utilizan para mostrar datos sobre una base geográfica. La densidad de datos se puede marcar por círculos, sombreado, rayado o color.
Mixtos: En estos tipos de gráficos se representan dos o más series de datos, cada una con un tipo diferente de gráfico. Son gráficos más vistosos y se usan para resaltar las diferencias entre las series.
Histogramas: Estos tipos de gráficos se utilizan para representa distribuciones de frecuencias. Algún software específico para estadística grafican la curva de gauss superpuesta con el histograma.
Dispersograma: Son gráficos que se construyen sobre dos ejes ortogonales de coordenadas, llamados cartesianos, cada punto corresponde a un par de valores de datos x e y de un mismo elemento suceso.
Pictogramas: Los pictogramas son gráficos similares a los gráficos de barras, pero empleando un dibujo en una determinada escala para expresar la unidad de medida de los datos. Generalmente este dibujo debe cortarse para representar los datos.