¿Qué es la electricidad?
Electricidad, categoría de fenómenos físicos originados por la existencia de cargas eléctricas y por la interacción de las mismas. Cuando una carga eléctrica se encuentra estacionaria, o estática, produce fuerzas eléctricas sobre las otras cargas situadas en su misma región del espacio; cuando está en movimiento, produce además efectos magnéticos.
Los efectos eléctricos y magnéticos dependen de la posición y movimiento relativos de las partículas con carga. En lo que respecta a los efectos eléctricos, estas partículas pueden ser neutras, positivas o negativas.
La electricidad se ocupa de las partículas cargadas positivamente, como los protones, que se repelen mutuamente, y de las partículas cargadas negativamente, como los electrones, que también se repelen mutuamente. En cambio, las partículas negativas y positivas se atraen entre sí. Este comportamiento puede resumirse diciendo que las cargas del mismo signo se repelen y las cargas de distinto signo se atraen.
Electricidad estática
El término electricidad estática se refiere a la acumulación de un exceso de carga eléctrica en una zona con poca conductividad eléctrica, un aislante, de manera que la acumulación de carga persiste.
Los efectos de la electricidad estática son familiares para la mayoría de las personas porque pueden ver, notar e incluso llegar a sentir las chispas de las descargas que se producen cuando el exceso de carga del objeto cargado se pone cerca de un buen conductor eléctrico (como un conductor conectado a una toma de tierra) u otro objeto con un exceso de carga pero con la polaridad opuesta.
Causas de la electricidad estática
Los materiales con los que tratamos en nuestra vida diaria están formados por átomos y moléculas que son eléctricamente neutros porque tienen el mismo número de cargas positivas (protones en el núcleo) que de cargas negativas (electrones alrededor del núcleo). El fenómeno de la electricidad estática requiere de una separación sostenida entre las cargas positivas y negativas, a continuación se muestran las principales causas de que esto sea posible:
Inducción de la separación de cargas por contacto: Los electrones pueden ser intercambiados entre dos materiales por contacto y, además, los materiales que tienen unos electrones débilmente ligados tienen tendencia a perderlos mientras que los materiales que no tienen llenas las capas externas de electrones tienen tendencia a ganarlos. Este fenómeno es conocido como triboelectricidad y da como resultado que uno de los objetos que se han puesto en contacto quede cargado positivamente mientras el otro se carga negativamente.
Separación de cargas inducida por la presión: Algunos tipos de cristales y cerámica tienen la propiedad de generar una separación de cargas en respuesta a la aplicación de un esfuerzo mecánico, es lo que se denomina piezoelectricidad, esta es un fenómeno presentado por determinados cristales que al ser sometidos a tensiones mecánicas adquieren una polarización eléctrica en su masa
Separación de cargas inducida por la temperatura: Algunos minerales, como la turmalina, presentan la capacidad de ser polarizados por efecto del calor, es lo que se conoce como piroelectricidad o efecto piroeléctrico. Todos los materiales piroeléctricos son también piezoeléctricos, las dos propiedades están estrechamente relacionadas entre sí. La piroelectricidad es la capacidad de cambiar la polarización de algunos materiales sometidos a cambios de temperatura generando un potencial eléctrico producido por el movimiento de las cargas positivas y negativas a los extremos opuestos de la superficie a través de la migración.
Separación de cargas inducida por la presencia de un objeto cargado: Un objeto cargado, puesto cerca de otro eléctricamente neutro, causará la separación de las cargas del otro, dado que las cargas de la misma polaridad se repelen mientras que las de diferente polaridad se atraen. Como la fuerza debida a la interacción entre las cargas eléctricas disminuye rápidamente con el aumento de la distancia, el efecto será mayor si están muy cerca . Este efecto es mayor cuando el objeto inicialmente neutro es un conductor eléctrico porque las cargas tienen más facilidad para moverse.
La corriente eléctrica
Los electrones que circulan entre dos cuerpos cargados con cargas opuestas, al unirlos con un conductor, forman lo que clásicamente se conoce como corriente eléctrica. Es decir que circulación de electrones y corriente eléctrica son sinónimos. Por lo general cuando se trata de fenómenos electrostáticos se habla de circulación de cargas o de electrones y cuando los procesos son continuos se habla de corriente eléctrica.
se idearon unidades prácticas tanto para la cantidad de electricidad o carga eléctrica como para la corriente eléctrica dándole a esas unidades el nombre de diferentes científicos que trabajaron con los fenómenos eléctricos.
La unidad practica de corriente eléctrica es el Coulomb (culombio) y es igual a 6,28 1018 electrones (6 trillones 228.000 electrones) o 6.280.000.000.000.000.000 electrones.
La unidad práctica de corriente eléctrica es el Amper y es igual a un Coulomb por segundo.
Para simplificar la notación se utilizan letras para representar a los diferentes conceptos y unidades. Por ejemplo a la carga siempre se la representa por la letra Q y a su unidad práctica por las letras Cb. La corriente eléctrica se representa por una I y a su unidad por una A. A la unidad de tiempo se la representa con la “t” minúscula (porque se reserva la T mayúscula para la temperatura) Con estas representaciones se puede escribir que la corriente eléctrica:
I = Q/t
medida en Cb/Seg o la unidad equivalente A.
Las unidades siempre involucran los múltiplos y submúltiplos de las mismas. En electrónica se utilizan por lo general los submultimplos del A es decir el mA (miliamper) y el uA (microamper) en la siguiente tabla se pueden observar estas equivalencias.
La electricidad dinámica
La electricidad dinámica se produce cuando existe una fuente permanente de electricidad que provoca la circulación permanente de electrones por un conductor.
Las fuentes permanentes de electricidad se dividen en químicas y electromecánicas:
Una pila eléctrica es una fuente química de electricidad. Dentro de la pila se generan reacciones químicas cuyo resultado es la producción de electrones. Estos electrones están disponibles para que circulen por ejemplo por un conductor, pero a diferencia de un cuerpo cargado esa fuente de electrones no se agota. Cuando se los utiliza la pila vuelve a generar mas electrones que reemplazan a los tomados.
Una dínamo es una maquina electromecánica que transforma energía mecánica de rotación en energía eléctrica. Hace lo mismo que la pila, es decir que la podemos asimilar a dos cuerpos cargados con diferente polaridad en donde las cargas que circulan son reemplazadas a medida que se van tomando.
En este caso la energía necesaria para restaurar las cargas se saca de una interacción magnética entre los electrones y el campo magnético rotatorio de la dínamo.
La resistencia eléctrica
La característica mas importante de lo que hasta ahora llamamos barra es su capacidad para nivelar las cargas de los cuerpos con mayor o menor velocidad. Intuitivamente sabemos que si coloco una barra de cobre las cargas se nivelan rápidamente; en cambio si coloco una barra de grafito las cargas pueden tardar mucho mas en nivelarse. En el primer caso decimos que la barra de cobre tiene muy poca resistencia a la circulación de la corriente eléctrica y el segundo que el grafito presenta mas resistencia a la circulación de los electrones.
Se define a una probeta del material como un alambre de 1 metro de longitud con una sección de 1 mm2 y se dice que la resistencia especifica de ese material es unitaria cuando el resistor tiene una resistencia de 1 Ohms. La letra elegida para nombrar a la resistencia es R. La formula que da la resistencia en función de la resistencia especifica del material y las dimensiones del mismo es la siguiente:
R = Re.L / S
en donde Re es la resistencia especifica del material
En la tabla siguiente expresamos la resistencia especifica de los materiales mas comunes.
Tabla de resistencias especificas
En electrónica se hace un uso enorme de barras de diferente resistencia. Tanto, que en realidad se define un componente llamado resistor, que puede tener valores específicos de resistencia que difieren entre si en un 1%, en un 5% o un 10% de acuerdo con su calidad. Estos resistores están construidos con grafito y poseen terminales de cobre para su soldadura en circuitos impresos con cobre sobre una lamina aislante.
La unidad Ohm representada por la letra griega Omega tiene por supuesto múltiplos y submúltiplos como el Amper. Las siguientes igualdades nos indican múltiplos y submúltiplos mas utilizados:
miliohm 1000 m? = 1 ?
kiloohm 1 K? = 1.000 ?
megaohm 1 M? = 1.000.000 ?
Tensión eléctrica
Se dice que una fuente tiene una diferencia de potencial o tensión de 1 Voltio cuando al conectarle un resistor de 1 Ohms circula 1 A de corriente eléctrica por el. La tensión de una fuente se individualiza por la letra E y su unidad el Voltio por la letra V. Las siguientes igualdades nos indican los múltiplos y submúltiplos mas utilizados:
microvolt 1.000.000 uV = 1 V
milivolt 1.000 mV = 1 V
Kilovolt 1 KV = 1.000 V
Ley de Ohm
La corriente fluye por un circuito eléctrico siguiendo varias leyes definidas. La ley básica del flujo de la corriente es la ley de Ohm, así llamada en honor a su descubridor, el físico alemán Georg Ohm. Según la ley de Ohm, la cantidad de corriente que fluye por un circuito formado por resistencias puras es directamente proporcional a la fuerza electromotriz aplicada al circuito, e inversamente proporcional a la resistencia total del circuito.
Esta ley suele expresarse mediante la fórmula I = V/R, siendo I la intensidad de corriente en amperios, V la fuerza electromotriz en voltios y R la resistencia en ohmios. La ley de Ohm se aplica a todos los circuitos eléctricos, tanto a los de corriente continua (CC) como a los de corriente alterna (CA), aunque para el análisis de circuitos complejos y circuitos de CA deben emplearse principios adicionales que incluyen inductancias y capacitancias.
Un circuito en serie es aquél en que los dispositivos o elementos del circuito están dispuestos de tal manera que la totalidad de la corriente pasa a través de cada elemento sin división ni derivación en circuitos paralelos.
Cuando en un circuito hay dos o más resistencias en serie, la resistencia total se calcula sumando los valores de dichas resistencias. Si las resistencias están en paralelo, el valor total de la resistencia del circuito se obtiene mediante la fórmula:
En un circuito en paralelo los dispositivos eléctricos, por ejemplo las lámparas incandescentes o las celdas de una batería, están dispuestos de manera que todos los polos, electrodos y terminales positivos (+) se unen en un único conductor, y todos los negativos (-) en otro, de forma que cada unidad se encuentra, en realidad, en una derivación paralela. El valor de dos resistencias iguales en paralelo es igual a la mitad del valor de las resistencias componentes y, en cada caso, el valor de las resistencias en paralelo es menor que el valor de la más pequeña de cada una de las resistencias implicadas. En los circuitos de CA, o circuitos de corrientes variables, deben considerarse otros componentes del circuito además de la resistencia.