Introducción
Radiactividad, desintegración espontánea de núcleos atómicos mediante la emisión de partículas subatómicas llamadas partículas alfa y partículas beta, y de radiaciones electromagnéticas denominadas rayos X y rayos gamma. El fenómeno fue descubierto en 1896 por el físico francés Antoine Henri Becquerel al observar que las sales de uranio podían ennegrecer una placa fotográfica aunque estuvieran separadas de la misma por una lámina de vidrio o un papel negro.
También comprobó que los rayos que producían el oscurecimiento podían descargar un electroscopio, lo que indicaba que poseían carga eléctrica. En 1898, los químicos franceses Marie y Pierre Curie dedujeron que la radiactividad es un fenómeno asociado a los átomos e independiente de su estado físico o químico.
También llegaron a la conclusión de que la pechblenda, un mineral de uranio, tenía que contener otros elementos radiactivos ya que presentaba una radiactividad más intensa que las sales de uranio empleadas por Becquerel. El matrimonio Curie llevó a cabo una serie de tratamientos químicos de la pechblenda que condujeron al descubrimiento de dos nuevos elementos radiactivos, el polonio y el radio.
Marie Curie también descubrió que el torio es radiactivo. En 1899, el químico francés André Louis Debierne descubrió otro elemento radiactivo, el actinio. Ese mismo año, los físicos británicos Ernest Rutherford y Frederick Soddy descubrieron el gas radiactivo radón, observado en asociación con el torio, el actinio y el radio.
Radiactividad natural
En 1896 Henri Becquerel descubrió que ciertas sales de uranio emiten radiaciones espontáneamente, al observar que velaban las placas fotográficas envueltas en papel negro.
Hizo ensayos con el mineral en caliente, en frío, pulverizado, disuelto en ácidos y la intensidad de la misteriosa radiación era siempre la misma. Por tanto, esta nueva propiedad de la materia, que recibió el nombre de radiactividad, no dependía de la forma física o química en la que se encontraban los átomos del cuerpo radiactivo, sino que era una propiedad que radicaba en el interior mismo del átomo.
El estudio del nuevo fenómeno y su desarrollo posterior se debe casi exclusivamente al matrimonio de Marie y Pierre Curie, quienes encontraron otras sustancias radiactivas: el torio, el polonio y el radio. La intensidad de la radiación emitida era proporcional a la cantidad de uranio presente, por lo que Marie Curie dedujo que la radiactividad es una propiedad atómica.
El fenómeno de la radiactividad se origina exclusivamente en el núcleo de los átomos radiactivos. Se cree que se origina debido a la interacción neutrón-protón. Al estudiar la radiación emitida por el radio, se comprobó que era compleja, pues al aplicarle un campo magnético parte de ella se desviaba de su trayectoria y otra parte no.
Pronto se vio que todas estas reacciones provienen del núcleo atómico que describió Ernest Rutherford en 1911, quien también demostró que las radiaciones emitidas por las sales de uranio pueden ionizar el aire y producir la descarga de cuerpos cargados eléctricamente.
Con el uso del neutrón, partícula teorizada en 1920 por Ernest Rutherford, se consiguió describir la radiación beta.
En 1932, James Chadwick descubrió la existencia del neutrón que Rutherford había predicho en 1920, e inmediatamente después Enrico Fermi descubrió que ciertas radiaciones emitidas en fenómenos no muy comunes de desintegración son en realidad neutrones.
Radiactividad artificial
La radiactividad artificial, también llamada radiactividad inducida, se produce cuando se bombardean ciertos núcleos estables con partículas apropiadas. Si la energía de estas partículas tiene un valor adecuado, penetran el núcleo bombardeado y forman un nuevo núcleo que, en caso de ser inestable, se desintegra después radiactivamente.
Fue descubierta por los esposos Jean Frédéric Joliot-Curie e Irène Joliot-Curie, bombardeando núcleos de boro y de aluminio con partículas alfa. Observaron que las sustancias bombardeadas emitían radiaciones después de retirar el cuerpo radiactivo emisor de las partículas de bombardeo.
En 1934 Fermi se encontraba en un experimento bombardeando núcleos de uranio con los neutrones recién descubiertos. En 1938, en Alemania, Lise Meitner, Otto Hahn y Fritz Strassmann verificaron los experimentos de Fermi. En 1939 demostraron que una parte de los productos que aparecían al llevar a cabo estos experimentos era bario. Muy pronto confirmaron que era resultado de la división de los núcleos de uranio: la primera observación experimental de la fisión.
En Francia, Jean Frédéric Joliot-Curie descubrió que, además del bario, se emiten neutrones secundarios en esa reacción, lo que hace factible la reacción en cadena.
También en 1932, Mark Oliphant teorizó sobre la fusión de núcleos ligeros (de hidrógeno), y poco después Hans Bethe describió el funcionamiento de las estrellas con base en este mecanismo.
El estudio de la radiactividad permitió un mayor conocimiento de la estructura del núcleo atómico y de las partículas subatómicas. Se abrió la posibilidad de convertir unos elementos en otros. Incluso se hizo realidad el ancestral sueño de los alquimistas de crear oro a partir de otros elementos, como por ejemplo átomos de mercurio, aunque en términos prácticos el proceso de convertir mercurio en oro no resulta rentable debido a que el proceso requiere demasiada energía.
Periodo de semidesintegración
La desintegración de algunas sustancias, como el uranio 238 o el torio 232, parece continuar indefinidamente sin que disminuya de forma detectable la tasa de desintegración por unidad de masa del isótopo (tasa de desintegración específica). Otras sustancias radiactivas muestran una marcada reducción de la tasa de desintegración específica a lo largo del tiempo.
Un ejemplo es el isótopo torio 234 (llamado originalmente uranio X), que una vez separado del uranio reduce su tasa de desintegración específica a la mitad en 25 días.
Cada sustancia radiactiva tiene un periodo de semidesintegración; en algunos isótopos es tan prolongado que los métodos actuales no permiten observar la disminución de la tasa de desintegración específica a lo largo del periodo de estudio. El torio 232, por ejemplo, tiene un periodo de semidesintegración de 14.000 millones de años.
Series de desintegración radiactiva
Cuando el uranio 238 se desintegra mediante emisión alfa, se forma torio 234; éste es un emisor beta y se desintegra para formar protactinio 234, que a su vez, es un emisor beta que da lugar a un nuevo isótopo del uranio, el uranio 234. Este isótopo se desintegra mediante emisión alfa para formar torio 230, que también se desintegra mediante emisión alfa y produce el isótopo radio 226.
Esta serie de desintegración radiactiva, denominada serie uranio-radio, continúa de forma similar con otras cinco emisiones alfa y otras cuatro emisiones beta hasta llegar al producto final, un isótopo no radiactivo (estable) del plomo (el elemento 82) con número másico 206. En esta serie están representados todos los elementos de la tabla periódica situados entre el uranio y el plomo, y cada isótopo puede distinguirse por su periodo de semidesintegración característico.
Todos los miembros de esta serie tienen un rasgo común: si se resta 2 a sus números másicos se obtienen números exactamente divisibles por 4, es decir, sus números másicos pueden expresarse mediante la sencilla fórmula 4n + 2, donde n es un número entero. Otras series radiactivas naturales son la serie del torio, llamada serie 4n porque los números másicos de todos sus miembros son exactamente divisibles por cuatro, y la serie del actinio o serie 4n + 3.
El elemento original de la serie del torio es el isótopo torio 232, y su producto final es el isótopo estable plomo 208. La serie del actinio empieza con el uranio 235 (llamado originalmente actinouranio por los investigadores) y acaba en el plomo 207. En los últimos años se ha descubierto y estudiado en profundidad una cuarta serie, la serie 4n + 1, en la que todos son elementos radiactivos artificiales. Su miembro inicial es un isótopo del elemento artificial curio, el curio 241. Contiene el isótopo más duradero del elemento neptunio, y su producto final es el bismuto 209.
Una aplicación interesante del conocimiento de los elementos radiactivos es su uso en la determinación de la edad de la Tierra. Un método para determinar la edad de una roca se basa en el hecho de que, en muchos minerales de uranio y torio (que se están desintegrando desde su formación), las partículas alfa han quedado atrapadas (en forma de átomos de helio) en el interior de la roca.
Determinando con precisión las cantidades relativas de helio, uranio y torio que hay en la roca, puede calcularse el tiempo que llevan ocurriendo los procesos de desintegración (es decir, la edad de la roca). Otro método se basa en la determinación de la relación que existe en la roca entre las cantidades de uranio 238 y plomo 206, o de torio 232 y plomo 208 (o sea, las relaciones entre la concentración de los miembros inicial y final de las series de desintegración).
Estos y otros métodos arrojan valores de la edad de la Tierra que oscilan en torno a unos 4.600 millones de años. Se han obtenido valores similares en meteoritos que han caído a la superficie terrestre y en muestras lunares traídas por el Apolo 11 en julio de 1969, lo que indica que todo el Sistema Solar tiene probablemente una edad similar a la Tierra.
Causa de la radiactividad
En general son radiactivas las sustancias que no presentan un balance correcto entre protones o neutrones, tal como muestra el gráfico que encabeza este artículo.
Cuando el número de neutrones es excesivo o demasiado pequeño respecto al número de protones, se hace más difícil que la fuerza nuclear fuerte debida al efecto del intercambio de piones pueda mantenerlos unidos.
Eventualmente, el desequilibrio se corrige mediante la liberación del exceso de neutrones o protones, en forma de partículas ? que son realmente núcleos de helio, y partículas ?, que pueden ser electrones o positrones. Estas emisiones llevan a dos tipos de radiactividad, ya mencionados:
– Radiación ?, que aligera los núcleos atómicos en 4 unidades másicas, y cambia el número atómico en dos unidades.
– Radiación ?, que no cambia la masa del núcleo, ya que implica la conversión de un protón en un neutrón o viceversa, y cambia el número atómico en una sola unidad (positiva o negativa, según si la partícula emitida es un electrón o un positrón).
La radiación, por su parte, se debe a que el núcleo pasa de un estado excitado de mayor energía a otro de menor energía, que puede seguir siendo inestable y dar lugar a la emisión de más radiación de tipo ?, ? o ?. La radiación ? es, por tanto, un tipo de radiación electromagnética muy penetrante, ya que tiene una alta energía por fotón emitido.