Razones y proporciones

Razón

En ocasiones se habla de razón aritmética y razón geométrica en el contexto de las progresiones aritméticas y progresiones geométricas, respectivamente. En los dos casos, la razón se entiende como la relación entre dos términos consecutivos de la sucesión, denominados antecedente y consecuente, siendo esta relación la diferencia en el caso de las progresiones aritméticas y el cociente en el caso de las progresiones geométricas.

Tradicionalmente se ha denominado exponente o exponente de la razón al número resultado de esta diferencia o cociente. En general, se entiende por razón el cociente adimensional entre dos números, y es en este sentido que se habla de razón de aspecto en una imagen o de la razón profesor-alumnos en un centro educativo.

Proporción

Proporción, en aritmética y geometría, relación especial entre un grupo de números o cantidades. Según la definición aritmética, proporción es la igualdad de dos razones.

La razón es la relación entre dos números, definida como el cociente de un número por el otro. Así, la razón de 12 a 3, expresada como 12/3 o como 4, indica que 12 contiene a 3 cuatro veces.

La razón de 8 a 2 es también 4, y por tanto, según la definición de proporción, los cuatro números 12, 3 y 8, 2 están en proporción. Esta proporción se expresa como 12:3::8:2, que se lee “12 es a 3 como 8 es a 2”.

En una proporción válida, el producto del primer término por el último (conocidos como los extremos) es igual al producto del segundo por el tercero (conocidos como los medios); la regla de tres aritmética está basada directamente en esta propiedad.

El objeto de esta regla es encontrar un cuarto número que es proporcional a tres números dados; este número se halla multiplicando el segundo número por el tercero y dividiendo el producto por el primero. La proporción continua es la propiedad de cada tres términos consecutivos o equidistantes de una progresión geométrica; por ejemplo, en la secuencia 2, 4, 8, 16, 32 …, 2:4::4:8 y 4:8::8:16.

En la antigua Grecia, la teoría de números no era adecuada para describir aritméticamente las magnitudes geométricas. Por tanto, el astrónomo y matemático griego Eudoxo propuso una teoría separada para la proporción geométrica en el siglo IV a. C. Una descripción detallada de esta teoría, escrita por el matemático griego Euclides, se puede encontrar en los libros quinto y sexto de los Elementos de geometría.

Propiedades de las razones aritméticas

Como la razón aritmética de dos cantidades no es más que la resta indicada de dichas cantidades, las propiedades de las razones aritméticas serán las propiedades de toda suma o resta.

Primera propiedad

Si al antecedente se le suma o resta una cantidad la razón aritmética queda aumentada o disminuida dicha cantidad.

– Primer caso (con la suma):

Sea la razón aritmética 7 a 5 es igual a 2:

7 – 5 = 2 ó 7.5 = 2

Si le sumamos al antecedente el número 4 (aclaramos que puede ser cualquier número) entonces tendríamos (7+4)-5= 6. Como se observa la respuesta de la razón aritmética original (7-5=2), después de sumarle 4 al antecedente ((7+4)-5= 6) la respuesta queda aumentada en dicha cantidad.

– Segundo caso (con la resta):

Sea la razón aritmética 18 a 3 es igual a 15:

18 – 3 = 15 ó 18.3 = 5

Si le restamos al antecedente el número 2 (aclaramos que puede ser cualquier número) entonces tendríamos (18-2)-3= 13.

Como se observa la respuesta de la razón aritmética original (18-3=15), después de restarle 2 al antecedente ((18-2)-3= 13) la respuesta queda disminuida en dicha cantidad.

Segunda propiedad

Si al consecuente de una razón aritmética se suma o se resta una cantidad cualquiera, la razón queda disminuida en el primer caso y aumentada en el segundo en la cantidad de veces que indica dicho número.

– Primer caso (sumando una cantidad cualquiera al consecuente)

Sea la razón aritmética 45 a 13 es igual a 32:

Si le sumamos al consecuente el número 7 (aclaramos que puede ser cualquier número) entonces tendríamos 45-(13+7)=25. Como se observa la respuesta de la razón aritmética original (45-13=32), después de sumarle 7 al consecuente 45-(13+7)=25) la respuesta queda disminuida en dicha cantidad es decir de 32 paso a ser 25.

– Segundo caso (restando una cantidad cualquiera al consecuente)

Sea la razón aritmética 36 a 12 es igual a 24:

Si le restamos al consecuente el número 3 (aclaramos que puede ser cualquier número) entonces tendríamos 36-(12-3)= 27. Como se observa la respuesta de la razón aritmética original (36-12=24), después de restarle 3 al consecuente (36-(12-3)= 27) la respuesta queda aumentada en dicha cantidad es decir de 24 paso a ser 27.

Ejemplos

– Razón

En una aula, por cada 4 alumnos hay 7 alumnas. Si el número de alumnos es 16 ¿Cuántas alumnas tiene el aula?

 

 

 

Ejemplo de razón

– Proporción

 

 

 

 

Ejemplo de proporción

La proporción se obtiene de multiplica por 8 tanto al numerador como al denominador.